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Abstract. Convexification is a fundamental technique in (mixed-integer)
nonlinear optimization and many convex relaxations are parametrized by
variable bounds, i.e., the tighter the bounds, the stronger the relaxations.
This paper studies how bound tightening can improve convex relax-
ations for power network optimization. It adapts traditional constraint-
programming concepts (e.g., minimal network and bound consistency) to
a relaxation framework and shows how bound tightening can dramati-
cally improve power network optimization. In particular, the paper shows
that the Quadratic Convex relaxation of power flows, enhanced by bound
tightening, almost always outperforms the state-of-the-art Semi-Definite
Programming relaxation on the optimal power flow problem.
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1 Introduction

In (mixed-integer) nonlinear optimization, convexification is used to obtain dual
bounds, complementing primal heuristics. In many cases, these convex relax-
ations are parametrized by variable bounds and the tighter the bounds are, the
stronger the relaxations. There is thus a strong potential for synergies between
convex optimization and constraint programming. This paper explores these
synergies in the context of power system optimization.

The power industry has been undergoing a fundamental transformation in
recent years. Deregulation, the emergence of power markets, pressure for reduced
capital investment, and the need to secure a clean sustainable energy supply all
stress the importance of efficiency and reliability in the design and operation of
power networks. As a result, optimization has become a critical component of
the emerging smart-grid [28] and has resulted in millions of dollars in annual
savings [32].

Power network applications range from long-term network design and invest-
ment tasks [21,7,12] to minute-by-minute operation tasks [23,14,19,16,17]. All
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of these optimization problems share a common core, the Alternating Current
(AC) power flow equations, which model the steady-state physics of power flows.
These equations form a system of continuous non-convex nonlinear equations
that prove to be a significant challenge for existing general-purpose optimiza-
tion tools. It is thus not surprising that, in the last decade, significant attention
has been devoted to developing computationally efficient convex relaxations.

The main contribution of this paper is to show that constraint program-
ming can substantially improve the quality of convex relaxations for power flow
applications. To obtain this result, the paper defines the concept of constraint
relaxation networks and generalizes traditional consistency notions to these net-
works, including minimal network and bound consistency. These concepts, and
the associated algorithms, are then applied to optimal power flow applications
with and without load uncertainty. The experimental results demonstrate the
significant value of bound tightening for power flow applications. In particular,

1. Bound tightening reduces the domains of the variables by as much as 90%
in many cases.

2. In over 90% of the test cases considered, propagation over the convex relax-
ation was sufficient to close the optimality gap within 1%. Only 4 of the test
cases considered remain open.

3. The network consistency algorithm improves the quality of the Quadratic
Convex (QC) relaxation [18] considerably. The QC relaxation now outper-
forms, in the vast majority of the cases, the established state-of-the-art Semi-
Definite Programming (SDP) relaxation on the optimal power flow problem.

4. Parallelization can significantly reduce the runtime requirements of bound
tightening, making the proposed algorithms highly practical.

The rest of the paper is organized as follows. Section 2 reviews the AC power flow
feasibility problem and introduces the notations. Section 3 reviews the state-of-
the-art QC power flow relaxation, which is essential for building efficient consis-
tency algorithms. Section 4 formalizes the idea of constraint relaxation networks
and Section 5 applies this formalism to AC power flows. Section 6 studies the
quality of bound tightening in this application domain and Section 7 evalu-
ates the proposed methods on the ubiquitous AC Optimal Power Flow problem.
Section 8 illustrates the potential of the proposed methods on power flow appli-
cations incorporating uncertainty and Section 9 concludes the paper.

2 AC Power Flow

A power network is composed of a variety of components such as buses, lines,
generators, and loads. The network can be interpreted as a graph pN,Eq where
the set of buses N represent the nodes and the set of lines E represent the edges.
Note that E is a set of directed arcs and ER will be used to indicate those arcs in
the reverse direction. To break numerical symmetries in the model and to allow
easy comparison of solutions, a reference node r P N is also specified.

Every node i P N in the network has three properties, voltage Vi “ vi=θi,
power generation Sgi “ pgi ` iq

g
i , and power consumption Sdi “ pdi ` iq

d
i , all of
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which are complex numbers due to the oscillating nature of AC power. Each
line pi, jq P E has an admittance Yij “ gij ` ibij , also a complex number. These
network values are connected by two fundamental physical laws, Kirchhoff’s
Current Law (KCL),

Sgi ´ S
d
i “

ÿ

pi,jqPEYER

Sij @ i P N (1)

and Ohm’s Law,

Sij “ Y
˚
ij pViV

˚
i ´ ViV

˚
j q @ pi, jq P E Y E

R. (2)

Note that bold values indicate parameters that are constant in the classic AC
power flow problem and non-bold values are the decision variables.

In addition to these physical laws, the following operational constraints are
required in AC power flows. Generator output limitations on Sg,

Sgli ď Sgi ď S
gu
i @i P N. (3)

Line thermal limits on Sij ,

|Sij | ď s
u
ij @pi, jq P E Y E

R. (4)

Bus voltage limits on Vi,

vli ď |Vi| ď v
u
i @i P N (5)

and line phase angle difference limits on ViV
˚
j ,

θ∆lij ď =
`

ViV
˚
j

˘

ď θ∆uij @pi, jq P E (6)

Note that power networks are designed and operated so that ´π{3 ď θ∆l ď
θ∆u ď π{3 [22] and values as low as π{18 are common in practice [33]. Ad-
ditionally the values of vl,vu, su must be positive as they are bounds on the
magnitudes of complex numbers.

Combining all of these constraints and expanding them into their real-number
representation yields the AC Power Flow Feasibility Problem (AC-PF) presented
in Model 1. The input data is indicated by bold values and a description of
the decision variables is given in the model. Constraint (7a) sets the reference
angle. Constraints (7b)–(7c) capture KCL and constraints (7d)–(7e) capture
Ohm’s Law. Constraints (7f) link the phase angle differences on the lines to the
bus variables and constraints (7g) enforce the thermal limit on the lines. This
particular formulation of AC-PF is advantageous as the auxiliary variables θ∆, p,
and q isolate the problem’s non-convexities in constraints (7d)–(7e) and enable
all but one of the operational constraints to be captured by the variable bounds.
This continuous constraint satisfaction problem is NP-Hard in general [40,24]
and forms a core sub-problem that underpins a wide variety of power network
optimization tasks.
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Model 1 The AC Power Flow Feasibility Problem (AC-PF)

variables:

pgi P pp
gl
i ,p

gu
i q @i P N - active power generation

qgi P pq
gl
i , q

gu
i q @i P N - reactive power generation

vi P pv
l
i ,v

u
i q @i P N - bus voltage magnitude

θi P p´8,8q @i P N - bus voltage angle

θ∆ij P pθ
∆l
ij ,θ

∆u
ij q @pi, jq P E - angle difference on a line (aux.)

pij P p´s
u
ij , s

u
ijq @pi, jq P E Y E

R - active power flow on a line (aux.)

qij P p´s
u
ij , s

u
ijq @pi, jq P E Y E

R - reactive power flow on a line (aux.)

subject to:

θr “ 0 (7a)

pgi ´ p
d
i “

ÿ

pi,jqPEYER

pij @i P N (7b)

qgi ´ q
d
i “

ÿ

pi,jqPEYER

qij @i P N (7c)

pij “ gijv
2
i ´ gijvivj cospθ∆ij q ´ bijvivj sinpθ∆ij q pi, jq P E Y E

R (7d)

qij “ ´bijv
2
i ` bijvivj cospθ∆ij q ´ gijvivj sinpθ∆ij q pi, jq P E Y E

R (7e)

θ∆ij “ θi ´ θj @pi, jq P E (7f)

p2ij ` q
2
ij ď ps

u
ijq

2
@pi, jq P E Y ER (7g)

To address the computational difficulties of AC-PF, convex relaxations (i.e.
polynomial time) have attracted significant interest in recent years. Such relax-
ations include the Semi-Definite Programming (SDP) [2], Second-Order Cone
(SOC) [20], Convex-DistFlow (CDF) [13], and the recent Quadratic Convex
(QC) [18] relaxations. To further improve these relaxations, this paper proposes
consistency notions and associated propagation algorithms for AC power flows.
A detailed evaluation on 57 AC transmission system test cases demonstrates
that the propagation algorithms enable reliable and efficient methods for im-
proving these relaxations on a wide variety of power network optimization tasks
via industrial-strength convex optimization solvers (e.g., Gurobi, Cplex, Mosek).
The next section reviews the QC relaxation in detail, which forms the core of
the proposed propagation algorithms.

3 The Quadratic Convex (QC) Relaxation

The QC relaxation [18] was introduced to utilize the bounds on the voltage vari-
ables v and θ∆, which are ignored by the other relaxations. The key idea is to use
the variable bounds to derive convex envelopes around the non-convex aspects of
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the AC-PF problem. The derivation begins by lifting the voltage product terms
in to the higher dimensional W-space using the following equalities:

wi “ v2i i P N (8a)

wRij “ vivj cospθ∆ij q @pi, jq P E (8b)

wIij “ vivj sinpθ∆ij q @pi, jq P E (8c)

When Model 1 is lifted into this W-space, all of the remaining constraints are
convex. On its own, this lifted model is a weak relaxation but the QC relaxation
strengthens it by developing convex relaxations of the nonlinear equations (8a)–
(8c) for the operational bounds on variables v and θ∆. The convex envelopes for
the square and bilinear functions are well-known [27], i.e.,

xx2yT ”

#

qx ě x2

qx ď pxu ` xlqx´ xuxl
(T-CONV)

xxyyM ”

$

’

’

’

’

&

’

’

’

’

%

|xy ě xly ` ylx´ xlyl

|xy ě xuy ` yux´ xuyu

|xy ď xly ` yux´ xlyu

|xy ď xuy ` ylx´ xuyl

(M-CONV)

Under the assumption that the phase angle difference bound is within ´π{2 ď
θ∆l ď θ∆u ď π{2, relaxations for sine and cosine are given by

xcospxqyC ”

#

|cx ď cospxq

|cx ě cospxl
q´cospxu

q

pxl´xuq
px´ xlq ` cospxlq

(C-CONV)

xsinpxqyS ”

$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

|sx ď cos
´

xm

2

¯´

x´ xm

2

¯

` sin
´

xm

2

¯

if xl ă 0^ xu ą 0

|sx ě cos
´

xm

2

¯´

x` xm

2

¯

´ sin
´

xm

2

¯

if xl ă 0^ xu ą 0

|sx ď sinpxq if xl ě 0

|sx ě sinpxl
q´sinpxu

q

pxl´xuq
px´ xlq ` sinpxlq if xl ě 0

|sx ď sinpxl
q´sinpxu

q

pxl´xuq
px´ xlq ` sinpxlq if xu ď 0

|sx ě sinpxq if xu ď 0

(S-CONV)

where xm “ maxp´xl,xuq. These are a generalization of the relaxations pro-
posed in [18] to support asymmetrical bounds on x. Utilizing these building
blocks, convex relaxations for equations (8a)–(8c) can be obtained by composing
relaxations of the subexpressions, for example, wRij ” xxvivjy

M xcospθi´θjqy
CyM .

Lastly, the QC relaxation proposes to strengthen these convex relaxations with
a valid second-order cone constraint [20,18,11],

pwRijq
2 ` pwIijq

2 ď wiwj @pi, jq P E (9)
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Model 2 The QC Power Flow Feasibility Problem (QC-PF)

variables: Variables of Model 1

stij P p´1, 1q @pi, jq P E - relaxation of the sine (aux.)

ctij P p0, 1q @pi, jq P E - relaxation of the cosine (aux.)

vvij P pv
l
iv
l
j ,v

u
i v

u
j q @pi, jq P E - relaxation of the voltage product (aux.)

wi P
´

pvliq
2, pvui q

2
¯

@i P N - relaxation of the voltage square (aux.)

wRij P p0,8q @pi, jq P E - relaxation of the voltage and cosine product (aux.)

wIij P p´8,8q @pi, jq P E - relaxation of the voltage and sine product (aux.)

subject to: (7a)–(7c),(7f)–(7g)

CONVpwi “ v2i P pv
l
i ,v

u
i qq @i P N (10a)

CONVpctij “ cospθ∆ij q P pθ
∆l
ij ,θ

∆u
ij qq @pi, jq P E (10b)

CONVpstij “ sinpθ∆ij q P pθ
∆l
ij ,θ

∆u
ij qq @pi, jq P E (10c)

CONVpvvij “ vivj P pv
l
i ,v

u
i q ˆ pv

l
j ,v

u
j qq @pi, jq P E (10d)

CONVpwRij “ vvijctij P pvv
l
ij ,vv

u
ijq ˆ pct

l
ij , ct

u
ijq @pi, jq P E (10e)

CONVpwIij “ vvijstij P pvv
l
ij ,vv

u
ijq ˆ pst

l
ij , st

u
ijq @pi, jq P E (10f)

pwRijq
2
` pwIijq

2
ď wiwj @pi, jq P E (10g)

pij “ gijwi ´ gijw
R
ij ´ bijw

I
ij @pi, jq P E (10h)

qij “ ´bijwi ` bijw
R
ij ´ gijw

I
ij @pi, jq P E (10i)

pji “ gijwj ´ gijw
R
ij ` bijw

I
ij @pi, jq P E (10j)

qji “ ´bijwj ` bijw
R
ij ` gijw

I
ij @pi, jq P E (10k)

The complete QC relaxation of the AC-PF problem is presented in Model
2 (QC-PF), which incorporates many of the components of Model 1. In the
model, the constraint CONV(y “ fpxq P D) is used to indicate that y lies in a
convex relaxation of function f within the domain D. Constraints (10a)–(10f)
implement the convex relaxations and constraints (10g) further strengthen these
relaxations. Constraints (10h)–(10k) capture the line power flow in terms of the
W-space variables.

The Impact of Tight Bounds in the QC Relaxation: Constraints (10a)–(10f)
in Model 2 highlight the critical role that the bounds on v and θ∆ play in
the strength of the QC relaxation. Figure 1 illustrates this point by showing
the convex relaxations for sine and cosine over the domains θ∆ P p´π{3,π{3q
and θ∆ P p´π{3, 0q. This figure indicates two key points: (1) Although the
reduction in the size of the bound is 50% in this case, the area inside of the
convex relaxations have been reduced even more significantly; (2) Both the sine
and cosine functions are monotonic when the sign of θ∆ is known, which produces
tight convex relaxations.
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Fig. 1. The Impact of Variable Bounds on the Convex Relaxations.

4 Consistency of Constraint Relaxation Networks

As discussed in Section 2, the core of many applications in power network op-
timization is a continuous constraint network. Moreover, the QC relaxation of
this continuous constraint network depends on the bounds of the variables. As
a result, constraint propagation now has two benefits: On one hand, it reduces
the domains of the variables while, on the other hand, it strengthens the relax-
ation. These two processes reinforce each other, since tighter constraints generate
tighter bounds creating a virtuous cycle. This section generalizes traditional con-
sistency notions to this new context through the concepts of constraint schemes
and constraint relaxations. Since solutions to continuous constraint networks
are real numbers and computer implementations typically rely on floating-point
numbers, some care must be exercised in formalizing these notions. The formal-
ization also assumes that only bound reasoning is of interest, since these are
continuous constraint networks. However, the concepts generalize naturally to
domain reasoning.

Continuous Constraint Networks Constraint networks are defined in terms of a
set of variables X “ tx1, . . . , xnu ranging over intervals I “ tI1, . . . , Inu and a set
of constraints. An interval I “ rl, us denotes the set of real numbers tr P < | l ď
r ď uu. This paper only considers floating-point intervals, i.e., intervals whose
bounds are floating-point numbers. If r is a real number, rrs denotes the smallest
floating-point interval containing r, rrs´ the largest floating-point number no
greater than r, and rrs` the smallest floating-point number no smaller than r.
A variable assignment assigns to each variable xi a value from its interval Ii. A
constraint is a function pX Ñ <q Ñ Bool which, given a variable assignment,
returns a truth value denoting whether the assignment satisfies the constraint.

Definition 1 (Continuous Constraint Network (CCN)). A continuous
constraint network is a triple pX, I, Cq where X “ px1, . . . , xnq is a collection of
variables ranging over I “ pI1, . . . , Inq and C is a set of constraints.

Definition 2 (Solution to a CCN). A solution to a CCN pX, I, Cq, where
X “ px1, . . . , xnq and I “ pI1, . . . , Inq, is an assignment σ “ tx1 Ð v1; . . . ;xn Ð
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vnu such that vi P Ii and for all c P C: cpσq holds. The set of solutions to a CCN
P is denoted by ΣpPq.

In the following we use maxpx,Σq to denote the maximum value of variable x
in the assignments Σ, i.e., maxpx,Σq “ maxσPΣ σpxq, where σpxq denotes the
value of variable x in assignment σ. The value minpx,Σq is defined similarly.
The following definition adapts the traditional concept of minimal constraint
network [31] to continuous constraint networks.

Definition 3 (Minimal CCN). A CCN P “ pX, I, Cq, where X “ px1, . . . , xnq
and I “ pI1, . . . , Inq, is minimal if, for each variable xi, the interval Ii “ rli, uis
satisfies li “ rminpxi, ΣpPqqs´ ^ ui “ rmaxpxi, ΣpPqqs`.

Note that the bounds are not necessarily solutions themselves but are as tight
as the floating-point accuracy allows for. Given a CCN P “ pX, I, Cq, its largest
minimal network P 1 “ pX , Im, Cq (Im Ď I) always exists and is unique since
there are only finitely many floating-point intervals.

The concept of bound consistency [39] captures a relaxation of the mini-
mal network: It only requires the variable bounds to be tight locally for each
constraint.

Definition 4 (Bound Consistency for CCNs). A CCN P “ pX, I, Cq,
where X “ px1, . . . , xnq and I “ pI1, . . . , Inq, is bound-consistent if each con-
straint c is bound-consistent with respect to I. A constraint c is bound-consistent
with respect to I if the continuous constraint network pX, I, tcuq is minimal.

Once again, given a CCN P “ pX, I, Cq, its largest bound-consistent network
P “ pX, Im, Cq (Im Ď I) always exists and is unique. In the following, we use
minCCNpX, I, Cq and bcCCNpX, I, Cq to denote these networks, i.e.,

minCCNpX, I, Cq “ maxtIm Ď I | pX, Im, Cq is minimalu,

bcCCNpX, I, Cq “ maxtIm Ď I | pX, Im, Cq is bound-consistentu.

Constraint Relaxation Networks The convex relaxations used in the QC relax-
ation depend on the variable bounds, i.e., the stronger the bounds the stronger
the relaxations. Since the relaxations change over time, it is necessary to intro-
duce new consistency notions: constraint schemes and constraint relaxations.

Definition 5 (Continuous Constraint Scheme). A constraint scheme r is a
function I Ñ pX Ñ <q Ñ Bool which, given a collection of intervals, returns a
constraint. Moreover, the scheme r satisfies the following monotonicity property:

I Ď I 1 ñ prpI 1qpσq ñ rpIqpσqq

for all collections of intervals I and I 1, and variable assignment σ.

The monotonicity property ensures that tighter bounds produce tighter con-
straints. Traditional constraints are constraint schemes that just ignore the ini-
tial bounds. A constraint relaxation is a constraint scheme that preserves the
solutions to the original constraint.
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Definition 6 (Constraint Relaxation). A constraint scheme r is a relaxation
of constraint c if, for all assignment σ and bounds I “ prσpx1qs, . . . , rσpxnqsq,
we have rpIqpσq ñ cpσq.1

Example 1. Consider the constraint cpx, y, zq which holds if z “ xy. Given
bounds rxl, xus and ryl, yus for variables x and y, the McCormick relaxation
[27] is a constraint scheme specified by the collection of constraints in M-CONV.
Note that this envelope ignores the bound on variable z. Additionally this con-
straint scheme is also a constraint relaxation of c because it is known to be the
convex envelope of z “ xy for any bounds on x and y [27].

Definition 7 (Continuous Constraint Relaxation Network (CCRN)).
A constraint relaxation network is a triple pX, I,Rq where X is a collection of
variables ranging over I and R is a set of constraint relaxations.

In the following, we use RpIq to denote trpIq | r P Ru if R is a set of relaxations.

Consistency of Constraint Relaxation Networks We now generalize the concepts
of minimal and bound-consistent networks to CCRNs. The definitions capture
the fact that no additional bound tightening is possible for the relaxations in-
duced by the bounds.

Definition 8 (Minimal CCRN). A CCRN P “ pX, I,Rq, X “ px1, . . . , xnq
and I “ pI1, . . . , Inq, is minimal if the CCN network pX, I,RpIqq is.

Definition 9 (Bound-Consistent CCRN). A CCRN P “ pX, I,Rq, where
X “ px1, . . . , xnq and I “ pI1, . . . , Inq, is bound-consistent if the CCN network
pX, I,RpIqq is.

Once again, the largest minimal or bound-consistent network of a CCRN exists
and is unique by monotonicity of constraint relaxations. In the following, we use
minCCRNpX, I, Cq and bcCCRNpX, I, Cq to denote these networks, i.e.,

minCCRNpX, I,Rq “ maxtIm Ď I | pX, Im, Rq is minimalu,

bcCCRNpX, I,Rq “ maxtIm Ď I | pX, Im, Rq is bound-consistentu.

The following property establishes the soundness of bound tightenings in CCRNs.

Proposition 1. Let pX, I, Cq be a CCN and let pX, I,Rq be a CCRN such that
R “ tr | c P C ^ r is a relaxation of cu. Then,

minCCNpX, I, Cq Ď minCCRNpX, I,Rq,

bcCCNpX, I, Cq Ď bcCCRNpX, I,Rq.

1 Note that some of the convex relaxations used in the QC relaxation are only valid
within some bounds. This is easily captured by assuming that the constraint itself
imposes these bounds.
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minCCRNpX, I,Rq
In := I;
repeat

Io := In;
In := minCCNpX, Io, RpIoqq;

until Io “ In

return In;

Fig. 2. Computing the Minimal
Continuous Constraint Relaxation
Networks

bcCCNpX, I, Cq
In := I;
repeat

Io := In;
for all c P C

Inc := minCCNpX, Io, tcuq;
In :=

Ş

cPC I
n
c ;

until Io “ In

return In;

Fig. 3. Computing the Largest
Bound-Consistent Constraint Net-
work.

The minimal and bound-consistent relaxation networks can be computed by a
simple fixpoint algorithm that iterates the consistency algorithm over the in-
creasingly tighter relaxation networks. Figure 2 depicts the algorithm for com-
puting a minimal network. The algorithm is similar for bound consistency. Ob-
serve that the bound-consistency algorithm has a fixpoint algorithm embedded
inside the top-level fixpoint.

4.1 Relation to Concepts in Global Optimization

The idea of bounds propagation for global optimization goes as far back as [6]:
It was subsequently implemented in the Numerica system which also performs
bound propagation on a linearization of the nonlinear constraints [37,38]. The no-
tion of using bound reductions for improving convex relaxations of non-convex
programs was first widely recognized in the Branch-and-Reduce (BnR) algo-
rithm [34]. BnR is a natural extension of Branch-and-Bound over continuous
domains, which includes additional steps to reduce the domains of the variables
at each search node. This line of work has developed into two core bound reduc-
tion ideas: (1) Feasibility-Based Range Reduction (FBRR), which is concerned
with pruning techniques based on feasibility information and (2) Optimality
Based Range Reduction (OBRR), which develops bound reductions based on
Lagrangian-duality arguments [35]. A variety of methods have been developed
for FBRR and OBRR with various pruning strength and computational time
tradeoffs [34,25,5]. However, all these methods are non-global bound reduction
techniques and may be iterated until a desired level of consistency is achieved.

CCRNs and the associated consistency notions (minCCRN, bcCCRN) de-
veloped herein are examples of FBRR methods. The idea of computing minC-
CRN is discussed informally in [4] for the special case where the relaxation is a
system of linear or convex equations (note that the algorithm in Figure 2 applies
for any kind of CSP). It is often noted in the FBRR literature that just one iter-
ation of the minCCRN is too costly to compute [4,35], let alone the full fixpoint.
The preferred approach is to perform some bound propagation (not always to
the fixpoint) on linear relaxations of the non-convex problem [35,25,5]. In fact,
specialized algorithms have been proposed for computing bound consistency on
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purely linear systems for this purpose [4]. The linear bound-consistency compu-
tations discussed in [4,5] are weaker forms of the bcCCRN notion considered
here since it does not explicitly mention re-linearizing the relaxation after bound
propagation is complete and re-computing bounds consistency. It is important to
note that the algorithm in Figure 2 seamlessly hybridizes the FBRR ideas from
global optimization to CP systems, which include arbitrary global constraints
that are outside the scope of purely mathematical programs. This advantage is
utilized in the next section.

5 Constraint Relaxation Networks for Power Flows

This section discusses how to compute the largest minimal and bound-consistent
networks for the relaxation model pX, I,Rq defined by Model 2. Observe first
that the convex relaxations used in Model 2 are all monotonic.

Proposition 2. The convex relaxations T-CONV, M-CONV, C-CONV, and S-
CONV are monotonic.

Minimal Network The largest minimal network is computed by Algorithm QC-
N which applies the fixpoint algorithm minCCRN shown in Figure 2 to Model
2. The underlying minCCN networks are computed by optimizing each variable
independently, i.e.,

Inx :“ r min
σ:Rpσq

σpxq, max
σ:Rpσq

σpxqs;

Observe that this computation is inherently parallel, since all the optimizations
are independent.

Bound-Consistent Network The largest bound-consistent network is computed
by Algorithm QC-B which applies the bound-consistency counterpart of algo-
rithm minCCRN to Model 2. The bcCCN networks needed in this fixpoint al-
gorithm are computed by the algorithm shown in Figure 3. Algorithm bcCCN
computes the intervals Inc that are bound-consistent for each constraint c P C
before taking the intersection of these intervals. The process is iterated until a
fixpoint is obtained. This algorithm was selected because the bound-consistency
computations can be performed in parallel.

Observe also that the QC-B algorithm is applied to a version of Model 2
using a global constraint

line power qc(pij , qij , vi, θi, pji, qji, vj , θj)

that captures constraints (7f)–(7g), (10a)–(10k) for each line pi, jq P E. The
use of this global constraint means that QC-B computes a stronger form of
bounds consistency than one based purely on Model 2. This stronger level of
consistency is necessary to obtain reasonable bound tightenings. Note that all the
optimizations in algorithms QC-N and QC-B are convex optimization problems
which can be solved in polynomial time.
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Fig. 4. QC Consistency Algorithms – Quality Analysis.
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Fig. 5. QC Consistency Algorithms – Runtime Analysis.

6 Strength and Performance of the Bound Tightening

This section evaluates the benefits of QC-N and QC-B on the general feasibility
problem in Model 1. Algorithms QC-N and QC-B were implemented in AMPL
[15] using IPOPT 3.12 [41] to solve the convex nonlinear programs. The prop-
agation algorithms were executed on Dell PowerEdge R415 servers with Dual
2.8GHz AMD 6-Core Opteron 4184 CPUs and 64GB of memory with a conver-
gence tolerance of ε “ 0.001. Their performance is evaluated on 57 transmission
system test cases from the NESTA 0.3.0 archive [10] ranging from 3 to 300 buses.

Figure 4 summarizes the results of QC-B and QC-N on three key metrics: the
phase angle difference domains (θ∆), the voltage domains (v), and the number of
lines where the sign of θ∆ is determined. Each plot summarizes the distribution
of 57 values as a standard box-and-whisker plot, where the width of the box
reflects the first and third quartiles, the black line inside the box is the median,
and the whiskers reflect min and max values up to 1.5 IQR with the remaining
data points plotted as outliers. In these plots values to the left are preferable.
The domain reduction of the QC-N approach is substantial, typically pruning
the domain θ∆ by 90% and the domain of v by 30% and determining the sign
of θ∆ for about half of the lines. Across all of the metrics, it is clear that QC-N
has significant benefits over QC-B.

Figure 5 summarizes the runtime performance of QC-B and QC-N on three
key metrics: Total CPU time (T1), fully parallel CPU wall-clock time (T8), and
the number of fixpoint iterations. The total runtimes of the QC-B and QC-N
algorithms vary widely based on the size of the network under consideration
and can range from seconds to hours. Fortunately, regardless of the size of the
network, the number of iterations in the fixpoint computation is small (often
less than 10). As a result, the parallel runtime of the algorithms scale well with
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the size of the network and rarely exceeds 1 minute, which is well within the
runtime requirements of the majority of network optimization applications.2

7 Application to AC Optimal Power Flow

This section assesses the benefits of QC-B and QC-N on the ubiquitous AC
Optimal Power Flow problem (AC-OPF) [29,30]. The goal of the AC-OPF is
to find the cheapest way to satisfy the loads given the network flow constraints
and generator costs functions, which are typically quadratic. If c2i, c1i, c0i are
the cost coefficients for generating power at bus i P N , the AC-OPF objective
function is given by,

minimize:
ÿ

iPN

c2ipp
g
i q

2 ` c1ipp
g
i q ` c0i (11)

The complete non-convex AC-OPF problem is Model 1 with objective (11) and
the QC relaxation of this problem is Model 2 with objective (11).

The goal is to compare five AC-OPF relaxations for bounding primal AC-
OPF solutions produced by IPOPT, which only guarantees local optimality. The
five relaxations under consideration are as follows:

1. QC - as defined in Model 2.
2. QC-B - bcCCRN for Model 2.
3. QC-N - minCCRN for Model 2.
4. SDP - a state-of-the-art relaxation based on semi-definite programming [26].
5. SDP-N - the SDP relaxation strengthened with bounds from QC-N.

There is no need to consider other existing relaxations as the QC and SDP
dominate them [11]. The computational environment and test cases are those of
Section 6. SDPT3 4.0 [36] was used to solve the SDP models.

Table 7 presents the detailed performance and runtime results on all 57 test
cases. They can be summarized as follows: (1) The optimality gaps of the QC
relaxation are significantly reduced by both QC-N and QC-B; (2) QC-N closes
the AC-OPF optimality gap to below 1% in 90% of the cases considered and
closes 10 open test cases; (3) QC-N almost always outperforms the SDP relax-
ation in quality with comparable parallel runtimes; (4) For the test cases with
significant optimality gaps, QC-N outperforms the SDP relaxation most often,
even when the SDP relaxation is strengthened with QC-N bounds (i.e., SDP-N).

Overall, these results clearly establish QC-N is the new state-of-the-art con-
vex relaxation of the AC-OPF. General purpose global optimization solvers (e.g.,
Couenne 0.4 [3] and SCIP 3.1.1 [1,8]) were also considered for comparison. Pre-
liminary results indicated that these general purpose solvers are much slower
than the dedicated power flow relaxations considered here and cannot produce
competitive lower bounds on these networks with in 10 hours of computation.

2 Dedicated high performance computational resources are commonplace in power
system operation centers. The T8 runtime is realistic in these settings where high-
level of reliability is critical.
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$/h Optimality Gap (%) T8 Runtime (sec.)
Test Case AC SDP-N SDP QC-N QC-B QC AC SDP-N SDP QC-N QC-B QC

case3 lmbd 5812 0.1 0.4 0.1 1.0 1.2 0.2 6.8 4.7 0.5 0.4 0.1
case4 gs 156 0.0 0.0 0.0 0.0 0.0 0.2 7.2 4.8 0.4 0.8 0.1

case5 pjm 17551 5.2 5.2 9.3 14.5 14.5 0.1 6.4 5.1 0.9 0.3 0.2
case6 c 23 0.0 0.0 0.0 0.3 0.3 0.0 6.9 5.4 1.3 0.4 0.1

case6 ww 3143 0.0 0.0 0.0 0.1 0.6 0.3 5.4 5.4 0.8 2.7 0.1
case9 wscc 5296 0.0 0.0 0.0 0.0 0.0 0.2 6.2 4.9 1.5 0.7 0.1
case14 ieee 244 0.0 0.0 0.0 0.1 0.1 0.1 4.8 5.2 2.0 0.4 0.1

case24 ieee rts 63352 0.0 0.0 0.0 0.0 0.0 0.2 8.5 6.0 3.2 0.5 0.2
case29 edin 29895 0.0 0.0 0.0 0.1 0.1 0.4 8.2 7.8 15.8 1.4 1.1

case30 as 803 0.0 0.0 0.0 0.1 0.1 0.3 6.9 5.4 2.3 0.5 0.1
case30 fsr 575 0.0 0.0 0.1 0.3 0.4 0.2 5.5 6.1 2.2 1.0 0.2

case30 ieee 205 0.0 0.0 0.0 5.3 15.4 0.4 7.8 6.3 0.7 0.7 0.3
case39 epri 96505 0.0 0.0 0.0 0.0 0.0 0.2 6.5 7.1 2.1 0.6 0.2
case57 ieee 1143 0.0 0.0 0.0 0.1 0.1 0.1 11.4 9.1 5.1 0.9 0.4

case73 ieee rts 189764 0.0 0.0 0.0 0.0 0.0 0.5 12.5 8.5 4.7 0.7 0.5
case118 ieee 3720 0.1 0.1 0.4 1.0 1.7 0.3 18.2 12.0 21.1 6.0 0.8

case162 ieee dtc 4237 1.0 1.1 0.7 3.8 4.2 0.7 57.6 34.2 25.9 7.0 1.5
case189 edin 849 — 0.1 0.1 — 0.2 0.9 12.3 13.3 6.5 59.9 1.6
case300 ieee 16894 0.1 0.1 0.1 1.0 1.2 0.9 40.8 25.5 48.2 14.4 2.4

case3 lmbd api 367 0.0 1.3 0.0 0.5 1.8 0.2 4.0 4.0 0.5 1.5 0.1
case4 gs api 767 0.0 0.0 0.0 0.2 0.7 0.9 6.9 3.9 0.8 0.3 0.1

case5 pjm api 2994 0.0 0.0 0.0 0.4 0.4 0.0 6.9 7.0 0.2 0.4 0.1
case6 c api 807 0.0 0.0 0.0 0.5 0.5 0.6 5.3 5.4 0.3 0.4 0.1

case6 ww api 273 — 0.0 0.0 2.1 13.1 0.2 4.5 15.0 0.4 0.4 0.1
case9 wscc api 656 0.0 0.0 0.0 0.0 0.0 0.4 5.4 6.4 0.8 0.9 0.1
case14 ieee api 323 0.0 0.0 0.2 1.3 1.3 0.1 6.4 4.7 0.5 0.4 0.1

case24 ieee rts api 6421 0.7 1.4 0.3 3.3 13.8 0.2 8.6 7.2 1.4 1.6 0.2
case29 edin api 295764 — — 0.1 0.4 0.4 0.3 12.6 7.8 28.4 1.1 3.2

case30 as api 571 0.0 0.0 0.0 2.4 4.8 0.4 7.6 6.0 3.7 0.8 0.2
case30 fsr api 372 3.6 11.1 2.7 42.8 46.0 0.2 7.9 6.7 1.4 0.4 0.2

case30 ieee api 411 0.0 0.0 0.0 0.9 1.0 0.3 8.9 6.5 1.0 0.5 0.2
case39 epri api 7466 0.0 0.0 0.0 0.8 3.0 0.1 9.2 6.5 4.9 1.9 0.2
case57 ieee api 1430 0.0 0.1 0.0 0.2 0.2 0.4 8.8 8.1 3.2 0.6 0.4

case73 ieee rts api 20123 0.9 4.3 0.1 3.6 12.0 0.6 15.4 9.5 11.4 2.0 0.6
case118 ieee api 10258 16.7 31.5 11.8 38.9 44.0 0.6 14.2 14.6 11.3 4.7 0.8

case162 ieee dtc api 6095 0.6 1.0 0.1 1.4 1.5 0.4 51.9 32.8 25.5 2.1 1.5
case189 edin api 1971 — 0.1 0.0 — 5.6 0.3 14.3 13.5 8.3 67.1 1.1
case300 ieee api 22825 0.0 0.0 0.2 0.6 0.8 0.9 47.5 28.5 71.1 3.6 2.6

case3 lmbd sad 5992 0.1 2.1 0.0 0.2 1.2 0.1 5.1 4.2 0.2 0.9 0.1
case4 gs sad 324 0.0 0.0 0.0 0.5 0.8 0.1 4.4 3.9 0.1 1.3 0.1

case5 pjm sad 26423 0.0 0.0 0.0 0.7 1.1 0.1 5.7 5.3 0.2 0.4 0.1
case6 c sad 24 0.0 0.0 0.0 0.4 0.4 0.1 6.7 4.6 0.2 0.3 0.1

case6 ww sad 3149 0.0 0.0 0.0 0.1 0.3 0.1 5.9 5.4 0.2 0.2 0.1
case9 wscc sad 5590 0.0 0.0 0.0 0.2 0.4 0.3 5.5 4.4 0.1 0.5 0.1
case14 ieee sad 244 0.0 0.0 0.0 0.1 0.1 0.1 7.5 4.6 0.5 0.3 0.1

case24 ieee rts sad 79804 1.4 6.1 0.1 3.4 3.9 0.3 9.3 5.7 0.6 0.4 0.3
case29 edin sad 46933 5.8 28.4 0.9 20.0 20.6 0.5 7.1 8.5 15.5 0.3 1.6

case30 as sad 914 0.1 0.5 0.0 2.9 3.1 0.1 6.4 6.8 2.3 0.3 0.2
case30 fsr sad 577 0.1 0.1 0.1 0.5 0.6 0.1 6.2 6.8 1.9 0.3 0.2

case30 ieee sad 205 0.0 0.0 0.0 2.0 4.0 0.3 7.0 6.0 0.6 0.6 0.1
case39 epri sad 97219 0.0 0.1 0.0 0.0 0.0 0.1 7.1 6.0 1.0 0.9 0.2
case57 ieee sad 1143 0.0 0.0 0.0 0.1 0.1 0.4 8.8 7.6 1.9 0.8 0.3

case73 ieee rts sad 235241 2.4 4.1 0.1 3.1 3.5 0.3 9.7 8.4 3.6 0.6 0.8
case118 ieee sad 4323 4.0 7.6 1.4 7.6 8.3 0.4 15.4 13.8 5.9 0.6 1.0

case162 ieee dtc sad 4368 1.7 3.6 0.4 5.9 6.9 0.9 46.8 37.7 27.3 2.1 1.4
case189 edin sad 914 — 1.2 0.5 — 2.2 0.6 11.4 17.4 12.2 49.6 1.1
case300 ieee sad 16912 0.1 0.1 0.1 0.8 1.2 0.9 25.2 30.8 45.6 5.5 2.4

Table 1. Quality and Runtime Results of Convex Relaxations on the AC-OPF Problem
(bold - best in row (runtime used to break ties in quality), — - solving error)
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Model 3 The AC-PF Program with Load Uncertainty (AC-PF-U)

variables: Variables of Model 1

pdi P pp
dl
i ,p

du
i q @i P N - active power load interval

qdi P pq
dl
i , q

du
i q @i P N - reactive power load interval

pgi P p0,p
du
i q @i P N - active power generation interval

subject to: (7a), (7d)–(7g)

pgi ´ p
d
i “

ÿ

pi,jqPEYER

pij @i P N (12a)

qgi ´ q
d
i “

ÿ

pi,jqPEYER

qij @i P N (12b)

8 Propagation with Load Uncertainty

Loads in power systems are highly predictable. In transmission systems, it is
commonplace for minute-by-minute load forecasts to be within 5% of the true
values [9]. This high degree of predictability can be utilized by the bound tight-
ening algorithms proposed here. Indeed, if the feasible set of Model 1 is increased
to include a range of possible load values, determined by the forecast, then the
algorithms compute a description of all possible future power flows. This section
studies the power of bound propagation in this setting.

Model 3 presents an extension of Model 1 to incorporate load uncertainty.
New decision variables for the possible load values are introduced (i.e., pd, qd)
and their bounds come from the extreme values of the load forecasting model.
The lower bounds on active power generation (pg) are also increased to include
0, as generators may become inactive at some point in the future (e.g., due to
scheduled maintenance or market operations). Constraints (12a)–(12b) incorpo-
rate the load variables into KCL. The other constraints remain the same as in
Model 1. Because only the KCL constraints are modified in this formulation,
the QC relaxation of Model 3 (QC-U) is similar to Model 1, as described in
Section 3. For the experimental evaluation, the 57 deterministic test cases were
extended into uncertain load cases by adopting a forecast model of ˘5% of the
deterministic load value.

Figure 6 compares the quality of minCCRN on the QC-U model (QC-U-N)
to minCCRN in the deterministic case (QC-N) in order to illustrate the pruning
loss due to uncertainty. The results indicate that, even when load uncertainty is
incorporated, minCCRN still prunes the variable domains significantly, typically
reducing the voltage angle domains by 80% and the voltage magnitude domains
by 10%, and determining the sign of θ∆ for about 30% of the lines. The domain
reduction on θ∆ in QC-U-N is particularly significant.

Figure 7 considers the AC-OPF and summarizes the optimality gaps pro-
duced under load certainty and uncertainty. QC-U-N produces significant im-
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Fig. 6. QC Consistency Algorithms with Load Uncertainty – Quality Analysis.
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Fig. 7. Comparison of AC-OPF Bound Improvements of QC Variants.

provement in optimality gaps, moving from ă 5% (QC) to less than ă 1%.
Obviously, load certainty (QC-N) closes the remaining 1%.

9 Conclusion

This paper studied how bound tightening can improve convex relaxations by
adapting traditional constraint-programming concepts (e.g., minimal network
and bound consistency) to a relaxation framework. It showed that, on power
flow applications, bound tightening over the QC relaxation can dramatically
reduce variable domains. Moreover, on the ubiquitous AC-OPF problem, the QC
relaxation, enhanced by bound tightening, almost always outperforms the state-
of-the-art SDP relaxation on the optimal power flow problem. The paper also
showed that bound tightening yields significant benefits under load uncertainty,
demonstrating a breadth of applicability. These results highlight the significant
potential synergies between constraint programming and convex optimization
for complex engineering problems.
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